

Received: 9 February 2018 First decision: 2 March 2018 Accepted: 23 May 2018

DOI: 10.1111/apt.14848

WILEY AP&T Alimentary Pharmacology & Therapeutics

Clinical features and outcomes of hepatocellular carcinoma in Caucasian cirrhotic patients on long-term analogue therapy for hepatitis B

A. Loglio¹ | M. lavarone¹ | G. Grossi¹ | M. Viganò² | MG. Rumi² | F. Facchetti¹ | G. Lunghi³ | A. Sangiovanni¹ | M. Colombo⁴ | P. Lampertico¹

C. Riebensahm, Journal Club 02.08.2018

Background

- Patients with Hepatitis-B-Virus (HBV) infection are at high risk of progression of cirrhosis and decompensation, hepatocellular carcinoma (HCC) and liver-related death
- Studies with long-term administration of third-generation nucleotide analogues (NUCs) have clearly shown to stabilize liver disease → reverse and prevent clinical decompensation
- Chemoprevention of HCC under HBV therapy is still a matter of debate
- Prospective studies to assess the outcome of patients developing HCC during anti-HBV therapy are lacking

Antiviral therapy in HBV patients

• <u>Indications</u>: **presence of cirrhosis, serum ALT level, serum HBV DNA level** and additional indications (e.g. malignancy and pregnancy)

Clinical Practice Guidelines

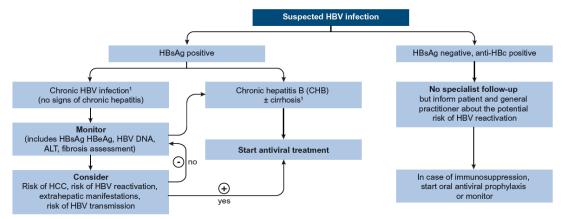


Fig. 2. Algorithm for the management of HBV infection. ¹see definitions in text and Fig. 1.

Antiviral therapy in HBV patients

- <u>Main Goal</u>: Improve survival by **preventing disease progression and HCC development** + prevention of mother to child transmission and hepatitis B reactivation
- <u>Endpoints</u>: Long-term suppression of HBV DNA, loss of HBeAg (when initially HBeAg-positive), ALT normalisation, and loss of HBsAg

Aim of the study

To define the clinical features and outcomes of HCC in long-term NUC-treated HBV patients

<u>Primary endpoints</u>: Clinical features of HCC and Alpha-fetoprotein (AFP) pattern <u>Secondary endpoints</u>: Response to treatments, development of early and late recurrence after therapy for HCC, and survival

Material and Methods

Design:

Retroprospective study

Setting:

• HCC Surveillance among NUC-treated HBV patients in 2 different hospitals in Milan, Italy

Patients:

- 76 de novo HCCs diagnosed between 2005 and 2016 enrolled
- All patients treated with NUC therapy for HBV-related liver disease
- <u>Exclusion criteria</u>: HCC detected at baseline or occurring within 6 months after starting treatment; HIV and HDV coinfections; autoimmune hepatitis

HBV therapy:

- Initial: Lamivudine or Entecavir (ETV) or Tenofovir disoproxil fumarate (TDF) as monotherapy
- For lamivudine-resistant patients Adefovir was added (from 2003) switched to TDF from 2008

Surveillance:

- Abdominal ultrasound and serum AFP levels every 6 months in cirrhotic patients
- AFP monitoring every 6 months for patients with advanced fibrosis (Ishak score 4-5)

HCC diagnosis:

- Per 2005 American Association for the Study of the Liver Diseases criteria (AASLD) until 2010
- From 2010 per updated criteria using contrast imaging techniques (CEUS, CT, MRI)
- Ultrasound-guided fine-needle biopsy in nodules escaping radiological diagnosis
- Staging at enrollment (MRI or CT chest-CT, bone scintigraphy when clinically required)
- HCC stage according to Barcelona Clinic Liver Cancer (BCLC) classification

Treatment for HCC:

- Evaluated by multidisciplinary clinical team
- Management changing in line with the updating of clinical guidelines
- Treatment selection according to the specific expertise of each Centre and the general condition of each patient; and other factors as tumor site
- Response to therapy defined by EASL and modified RECIST criteria (CT or MRI)

Statistical analysis:

- Fisher's exact or chi-square for quantitative and qualitative variables
- Kaplan-Meier to estimate outcome rates
- Log-rank test to compare curves between patient groups
- Kalbfleisch-Prentice method for competing risk framework

Results: Demographical and Clinical features of study population (n=76)

TABLE 1 Demographical, clinical and virological characteristics of the 76 patients with HBV-related hepatocellular carcinoma developed during long-term treatment with nucleos(t)ide analogues

Variable	N = 76
Age, y ^a	67 (40-83)
Males	64 (84%)
Ethnicity	
Caucasian	73 (96%)
Asian	2 (3%)
Indian Americans	1 (1%)
Family history of hepatocellular carcinoma	2 (3%)
Alcohol abuse	3 (4%)
Smoking habits	19 (25%)
Overweight (BMI 25-29.9 kg/m ²)	29 (38%)
Obesity (BMI >30 kg/m ²)	10 (13%)
Class I	9
Class II	1
Diabetes	12 (16%)

Cirrhosis ^b	70 (92%)
Child-Pugh Turcotte score	
A	64 (91%)
В	5 (8%)
с	1 (1%)
Transient elastography value >12 kPac	15 (38%)
Oesophageal varices	13 (17%)
Small-sized varices	10 (13%)
Medium/large-sized varices	3 (4%)
qHBsAg, IU/mL ^d	644 (2-10 650)
HBeAg negative	72 (95%)
HBV DNA undetectable	73 (96%)
Genotype D*	40 (89%)
Nucleos(t)ide analogues	
ETV or TDF ± Lamivudine	57 (75%)
Lamivudine	10 (13%)
Lamivudine+Adefovir	9 (12%)
Duration of Nucleos(t)ide analogues treatment, m	o* 81 (6-190)
ALT <41 IU/L	63 (83%)

BMI, body mass index; ETV, entecavir; TDF, tenofovir; ALT, alanine aminotransferase; qHBsAg, quantitative hepatitis B surface antigen; HBeAg, hepatitis B e antigen.

^aMedian (range); ^bat NUC start; ^cavailable in 55 patients (72%) and performed within 6 mo before diagnosis; ^davailable in 41 patients (54%); ^savailable in 45 patients (59%) at NUC start. Obesity grade I: BMI 30-34.9 kg/m²; obesity grade II: BMI ≥35 kg/m².

Results: Characteristics of tumours

Variable N = 76
Single tumour node 59 (78%)
Node size, mm* 20 (6-57)
In "Mian criteria" 71 (93%)
In "Up to 7 criteria" 71 (93%)
Extra-hepatic disease ^b 2 (3%)
BCLC staging system
0 17 (22%)
A 53 (70%)
B 2 (3%)
C 3 (4%)
D 1 (1%)
AFP levels, ng/mL ^a 4 (1-3615)
>7 27 (36%)
>200 4 (5%)

BCLC, Barcelona Clinic for Liver Cancer; AFP, alpha-fetoprotein.

*Median (range); *Macrovascular portal vein invasion in 2 and lymphnode metastasis in 1.

Bauchzentrum

Treatment algorithm

First-line treatment: curative treatment in 59 (78%) patients

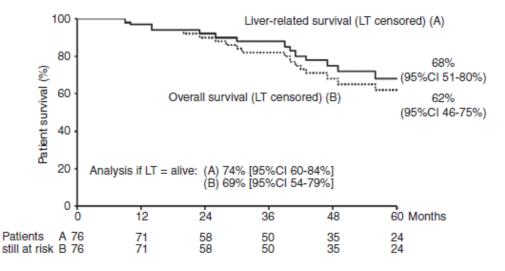
- 30 (58%) Radio-frequency thermal ablation (RFTA)
- 21 (41%) surgical resection
- 8 patients were listed for Liver Transplant (LT) (in 5 patients bridge therapy)

Non curative approaches: 17 (22%) patients

- 13 (76%) Transarterial Chemoembolization (TACE)
- 2 (12%) Radioembolization
- 2 (12%) Systemic medical treatment

Response

- Complete response in 40 (59%) patients after first treatment (excluding 8 LT)
 - 24 (60%) maintained complete response during 45.4 months of FUP
 - 16 (40%) experienced recurrence in 20.2 months \rightarrow resection (1)/ RFTA (5) / TACE (8)/ Sorafenib (2)
- Partial response in 13 (19%) patients
 - \rightarrow Second-line treatment: LT (5), RFTA (7), TACE (1)
- Stable disease in 2 (3%) patients (treated with sorafenib)
- Disease progression in 13 (9%) patients
 - LT (3), RFTA (2), TACE (3), Sorafenib (2), best supportive care (3)


 \rightarrow <u>Overall complete response in 45 (58%) patients</u>

Survival

- 19 (25%) patients died during 45 months after HCC diagnosis:
 15 (79%) due to HCC progression
 4 (21%) for extra-hepatic reasons
 - (no patients died for end-stage liver disease)
- Median overall survival (OS): 45 months, 5-year OS: 69%; 5-year OS in LF patients: 62%
- Median liver-related survival: 45 months, corresponding 5-year OS: 74%

Discussion

- 1. Clinical and biological features of HCC occuring in long term NUC-therapy: small nodules, amenable for curative treatment– compared to previous studies
- 2. Excellent 5-year overall survival of patients of 69%
- 3. Limitation of diagnostic accurancy of AFP levels

Discussion

- 1. Clinical and biological features of HCC occuring in long term NUC-therapy:
 - Majority of cases presented with early, small, single HCC

Literature:

- Previous studies in untreated cirrhotics showed that HBV related HCC are aggressive
- Previous studies in NUC-treated patients, but from different geographical areas and smaller in size

Explanations:

Logistic:

- Compliance optimised by recall policies and frequent visits due to the need of NUC
- HCC surveillance is free in Italy (Europe) ightarrow access easier

Biological:

- Reduced inflammation and fibrosis, ; modification of adaptive immune reactions, effective control of HBV DNA \rightarrow reduction of cytokines and growth factors
- Lower turnover of hepatocytes ightarrow reduces riks of host DNA mutations

Other:

• Finding of limited number of HCC detected in advanced stages more likely due to the limited sensibility of ultrasound

Discussion

2. <u>Most important finding</u>: Excellent 5-year overall survival of patients of 69%; low risk of reccurence: 39% after 3 years

Literature:

- Pooling data from studies in Asia: compared treated and untreated patients
 → showed better OS in treated patients and lower risk of death (statistical significance not reached ← small sample size and short FUP)
- In Asian studies 5-year survival of patients with HCC developed during treatment with NUC varied between 16% and 40%
 → might be due to more advance stage of HCC; no access to transplantation
- Many studies included patients treated with NUC only after HCC treatments (different study design)

Explanations:

- Possible Explanation: Strict adherence to surveillance protocol → identification of small treatable tumours
- Multiple anti-tumour procedures could been offered with well-preserved liver function (due to prolonged suppression of HBV infection)

Discussion

- 3. Diagnostic accurancy of AFP levels was limited: 64% serum levels < 7ng/mL
- In line with other data (Korea): patients with current NUC therapy showed poorer performance of AFP

Explanation:

• HBV replication might directly induce AFP expression in HCC

 \rightarrow decreased sensitivity?

- Contrast: 2 Asian studies showed high positive predictive value for HCC development
- All studies showed a high specificity of AFP increase during NUC therapy (when ALT levels normal)

Limitations

- Lack of an untreated control group
 - unethical to offer cirrhotic patients no treatment
 - hard to compare data to old cohorts (progress in treatment)
- Sample Size
- Academic centre with large expertise

 limit applicability of finding in other regions

Strengths

- Largest cohort study to date
- Management according to international updated criteria
- Patients were homogeneous and managed by a single centre unit

Conclusion

- Majority of HCC developing in Caucasian compensated cirrhosis patients on longterm NUC are small (BCLC 0/A lesions), amenable to potentially curative treatments with survival benefits
- NUC therapy can be associated to **low risk of HCC recurrence** among patients with HBV related HCC
- This study sheds new light on the topic that HCC is almost the only complication in patients with HBV permanently suppressed by NUC

 \rightarrow Identification and strict adherence to surveillance protocol is of importance

ightarrow Data must be confirmed in other independent cohorts

LEBER ZENTRUM BERN

Gastroenterology 2018

Compliance With Hepatocellular Carcinoma Surveillance Guidelines Associated With Increased Lead-Time Adjusted Survival of Patients With Compensated Viral Cirrhosis

Charlotte Costentin,¹ Richard Layese,² Valérie Bourcier,³ Carole Cagnot,⁴ Patrick Marcellin,⁵ Dominique Guyader,⁶ Stanislas Pol,⁷ Dominique Larrey,⁸ Victor De Lédinghen,⁹ Denis Ouzan,¹⁰ Fabien Zoulim,¹¹ Dominique Roulot,¹² Albert Tran,¹³ Jean-Pierre Bronowicki,¹⁴ Jean-Pierre Zarski,¹⁵ Ghassan Riachi,¹⁶ Paul Calès,¹⁷ Jean-Marie Péron,¹⁸ Laurent Alric,¹⁹ Marc Bourlière,²⁰ Philippe Mathurin,²¹ Jean-Frédéric Blanc,²² Armand Abergel,²³ Lawrence Serfaty,²⁴ Ariane Mallat,^{1,25} Jean-Didier Grangé,²⁶ Pierre Attali,²⁷ Yannick Bacq,²⁸ Claire Wartelle,²⁹ Thông Dao,³⁰ Dominique Thabut,³¹ Christophe Pilette,³² Christine Silvain,³³ Christos Christidis,³⁴ Eric Nguyen-khac,³⁵ Brigitte Bernard-Chabert,³⁶ David Zucman,³⁷ Vincent Di Martino,³⁸ Angela Sutton,^{39,40,41} Eric Letouzé,⁴² Sandrine Imbeaud,⁴² Jessica Zucman-Rossi,^{42,43} Etienne Audureau,² Françoise Roudot-Thoraval,^{1,44} and Pierre Nahon^{3,42}; on behalf of the ANRS CO12 CirVir Group

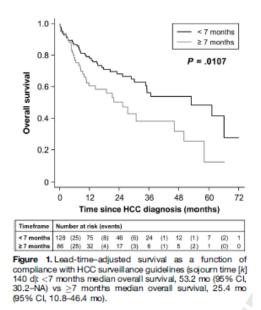
C. Riebensahm, Journal Club 02.08.2018

Compliance with HCC surveillance guidelines

- Evidence of survival benefit associated with HCC surveillance remains controversial
- Previous studies limited

<u>Aim of the study:</u> Asses impact of complicance with surveillance guidelines on tumor burden, allocation of curative treatment, survival in patients with viral cirrhosis

Setting:


- Large, prospective, multicenter ANRS CO12 CirVir cohort in France
- Patients were considered complicanct if time were <7 months ; noncompliant if > 7 months

Results

- Diagnosis of HCC in 216 patients (5-year cumulative incidence of HCC in cohort: 12.9%)
 - Compliance with guidelines: 129 patients (60%)
 - Patients who were complied had a lower tumor burden and better access to curative treatments
 - → Median OS rate in compliant patients 57.8 months vs. 30 months in noncompliant patients
 → After lead-time adjustment, this difference remained significant

Conclusion

- \rightarrow Survival advantage associated with compliance with HCC –screening guidelines
- → Even a moderate deviation from screening guidelines had a dramatic impact on survival (OS compliant patients twice as long as OS noncompliant patients)
- →Improving compliance with surveillance guidelines should translated into a significant improvement in the prognosis

Thank you for your attention !

